Crystallography (1974), locally written or locally modified versions of standard computer programs, final $R=0.034, w R=0.037$ for 670 reflections with $I \geq 3 \sigma(I), S=1.319,96$ parameters, isotropic type I extinction, $g=0.7(1) \times 10^{4}, R=0.098$ for all 1255 reflections, $\Delta / \sigma=0.003$ (mean), 0.011 (maximum), maximum final difference density -0.25 to $0.29 \mathrm{e}^{-3}$ (all large peaks near Cl atoms).

Discussion. Final positional and equivalent isotropic thermal parameters ($U_{\mathrm{eq}}=\frac{1}{3}$ trace of diagonalized \mathbf{U}) are given in Table 1, and geometrical data appear in Table 2.* A stereoview of the molecule is shown in Fig. 1.

The compound (3) is evidently formed through a complex series of reactions with resorcinol (1). A possible mechanism involves cyclization and dehydration of the intermediate chlorinated acid (2).

The five-membered ring is planar to within experimental error but the molecule as a whole deviates slightly from planarity, the maximum displacements from the weighted mean molecular plane being $-0.08(5) \AA$ for $\mathrm{H}(3)$ and $+0.063(2) \AA$ for $\mathrm{Cl}(3)$. The molecular geometry (Table 2) is normal, with mean distances: $\mathrm{C}\left(s p^{2}\right)-\mathrm{Cl}=1.707(8), \mathrm{C}=\mathrm{O}=1.187(6)$, $\mathrm{C}\left(s p^{2}\right)-\mathrm{O}=1.381(8), \mathrm{C}=\mathrm{C}=1.327(8)$, and $\mathrm{C}\left(s p^{2}\right)$,

[^0]

Fig. 1. Stereoscopic view of the molecule: 50% probability thermal ellipsoids are shown for the non-hydrogen atoms.
$C\left(s p^{2}\right)=1.450(4) \AA$. The shortest intermolecular distance between non-hydrogen atoms is $\mathrm{Cl}(2) \cdots \mathrm{O}(2)$ $\left(x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z\right)=3.001$ (4) \AA.

We thank the Environmental Research Foundation of the Swedish Pulp and Paper Association and the Natural Sciences and Engineering Research Council of Canada for financial support and the University of British Columbia Computing Centre for assistance.

References

Boyce, S. D. \& Hornig, J. F. (1983). Environ. Sci. Technol. 17, 202-211.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99-102 and 149. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
McKague, A. B., Kolar, M.-C. \& Kringstad, K. P. (1988). Environ. Sci. Technol. 22. In the press.

Acta Cryst. (1988). C44, 1602-1605

Structure of the (+)-Tartrate of the Selective 5-HT $\mathbf{2}$ Antagonist Irindalone

By Birthe Jensen

Royal Danish School of Pharmacy, Department of Chemistry BC, Universitetsparken 2, DK-2100 Copenhagen, Denmark
(Received 1 March 1988; accepted 28 April 1988)

Abstract. $\quad(+)-(1 R, 3 S)$-trans-1-[2-[4-[3-(4-Fluoro-
phenyl)-1-indanyl]-1-piperazinyl]ethyl]-2-imidazolidinone, $\quad(+)-(2 R, 3 R)$-tartrate. $\quad \mathrm{C}_{28} \mathrm{H}_{35} \mathrm{FN}_{4} \mathrm{O}_{7}, \quad M_{r}=$ 558.6, monoclinic, $P 2_{1}, \quad a=24.716$ (9), $\quad b=$ 8.457 (10), $\quad c=6.290$ (3) $\AA, \quad \beta=93.21$ (3) ${ }^{\circ}, \quad V=$ 1313 (3) $\AA^{3}, Z=2, D_{m}(295 \mathrm{~K})=1.39(1), D_{x}(105 \mathrm{~K})$ $=1.413 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} \mathrm{Ka})=0.71073 \AA, \mu($ Mo K $\alpha)$ $=0.10 \mathrm{~mm}^{-1}, \quad F(000)=592, \quad T=105(1) \mathrm{K} . \quad R=$ 0.041 for 3885 observed $[I \geq 3.0 \sigma(I)]$ reflections. The absolute configuration is $1 R, 3 S$, opposite to the 0108-2701/88/091602-04\$03.00
expected configuration. The ions are connected into infinite chains via hydrogen bonds from piperazine N atoms to tartrate ions.

Introduction. The selective $5-\mathrm{HT}_{2}^{*}$ antagonist irindalone was developed by systematic variations of structural components (Bøgesø, 1988). The structure

[^1]Table 1. Final positional and thermal parameters for non-hydrogen atoms

$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i} \cdot \mathrm{a}_{j}$.				
	x	y	z	$U_{\text {eq }} \times 10^{2}\left(\AA^{2}\right)$
0011	0.66516 (7)	0.6472	0.3432 (2)	1.07
0012	0.62305 (7)	0.5594 (2)	0.6270 (3)	1.23
C 01	0.65136 (9)	0.6572 (3)	0.5358 (3)	0.84
C 02	0.67216 (9)	0.8021 (3)	0.6592 (3)	0.83
002	0.70085 (8)	0.9064 (2)	0.5283 (3)	1.44
C 03	0.70921 (9)	0.7457 (3)	0.8485 (3)	0.88
003	0.74917 (7)	0.6404 (2)	0.7794 (3)	1.33
C04	0.73505 (9)	0.8876 (3)	0.9657 (3)	0.96
0041	0.78367 (8)	0.9129 (3)	0.9523 (3)	2.04
0042	0.70210 (7)	0.9722 (2)	1.0698 (3)	1.21
C1	0.80428 (9)	0.2327 (3)	0.2507 (3)	0.98
C2	0.82475 (10)	0.0949 (3)	0.3943 (4)	1.19
C3	0.84754 (10)	$0 \cdot 1669$ (3)	0.6093 (4)	1.30
C4	0.87374 (11)	0.4603 (4)	0.6903 (5)	2.19
C5	0.87378 (12)	0.6149 (4)	0.6139 (6)	2.69
C6	0.85286 (11)	0.6503 (3)	0.4103 (6)	2.48
C7	0.82992 (11)	0.5325 (3)	0.2790 (5)	1.85
C8	0.82799 (10)	0.3789 (3)	0.3585 (4)	1.23
C9	0.85043 (9)	$0 \cdot 3420$ (3)	0.5600 (4)	1.33
N11	0.63466 (8)	0.3666 (2)	0.2156 (3)	0.89
C12	0.66237 (10)	0.3334 (3)	0.0154 (3)	1.07
C13	0.72312 (10)	0.3486 (3)	0.0572 (3)	1.14
N14	0.74299 (8)	0.2340 (2)	0.2246 (3)	0.85
C 15	0.71526 (9)	0.2674 (3)	0.4254 (3)	0.86
C16	0.65452 (9)	0.2528 (3)	0.3848 (3)	0.96
C 17	0.57412 (9)	0.3609 (3)	0.1769 (4)	1.25
C18	0.55322 (9)	0.5167 (3)	0.0768 (4)	1.23
N31	0.50367 (8)	0.4956 (3)	-0.0527 (3)	1.13
C32	0.45409 (9)	0.4815 (3)	0.0342 (4)	1.03
032	0.44383 (8)	0.5233 (3)	0.2147 (3)	1.85
N33	0.41869 (8)	0.4179 (3)	-0.1166 (3)	1.24
C34	0.44234 (9)	0.4088 (3)	-0.3234 (3)	1.28
C35	0.50327 (10)	0.4207 (3)	-0.2628 (4)	1.38
C21	0.90117 (10)	0.0942 (3)	0.6865 (4)	1.37
C22	0.94667 (11)	$0 \cdot 1098$ (4)	0.5660 (5)	2.40
C23	0.99538 (12)	0.0371 (5)	0.6296 (5)	2.84
C24	0.99803 (11)	-0.0483 (4)	0.8156 (5)	2.22
C25	0.95473 (12)	-0.0642 (4)	0.9431 (4)	2.04
C26	0.90602 (10)	0.0074 (3)	0.8751 (4)	1.54
F24	1.04551 (8)	-0.1222 (3)	0.8761 (3)	3.48

determination was undertaken in order to establish the absolute configuration of irindalone and thereby of a whole class of related compounds for which the biological effects are highly stereospecific (Bøgesø, Hyttel, Christensen, Arnt \& Liljefors, 1986).

Experimental. Title compound synthesized by K. P. Bøgesø, H. Lundbeck \& Co A/S. Transparent plate-like crystals grown from DMF and water, kept in a desiccator containing $\mathrm{P}_{2} \mathrm{O}_{5}$. M.p. (hot stage microscope) $490-492 \mathrm{~K} . D_{m}$ by flotation. Crystal size for data collection $0.1 \times 0.2 \times 0.3 \mathrm{~mm}$. Enraf-Nonius CAD-4 diffractometer and low-temperature device, graphitemonochromatized Mo $K \alpha$ radiation. Temperature recorded with a thermocouple, variation within 1 K . Cell parameters and orientation matrix from 16 reflections ($18 \leq \theta \leq 21^{\circ}$). No corrections for absorption or secondary extinction. Three intensity control
reflections measured every $10^{4} \mathrm{~s}$; no systematic variation. Intensity data measured by $\omega-2 \theta$ scan, $\theta_{\text {max }}$ $=32 \cdot 5^{\circ} ;-37 \leq h \leq 37,0 \leq k \leq 12,0 \leq l \leq 9.5010$ unique reflections measured, 1112 unobserved, 13 removed due to measuring errors. $R_{\text {int }}=0.038$, for $\pm h 00$. Non-hydrogen atoms localized by direct methods using MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980). All H atoms were placed in calculated positions, except the hydroxyl H atoms which were placed in positions found in a $\Delta \rho$ map; no refinement of H atoms ($U_{\text {iso }}$ $=0.025 \AA^{2}$). Structure refinement by least squares minimizing $\sum w\left(\left|F_{o}\right|-k\left|F_{c}\right|\right)^{2}, \quad w=1$ if $F_{o} \leq 15 \cdot 0$, otherwise $w=15^{2} F_{o}^{o-2}$. Programs of the $X R A Y$ system (Stewart, Machin, Dickinson, Ammon, Heck \& Flack, 1976). Atomic scattering factors as implemented in $X R A Y 76$. Final $R=0.041, w R=0.058$. $\Delta / \sigma \leq 0.21$. Features in final $\Delta \rho \leq \pm 0.2 \mathrm{e}^{-3}$.

Discussion. Final atomic coordinates and equivalent isotropic thermal parameters for non-hydrogen atoms are given in Table 1.* The atom-numbering scheme is shown in Fig. 1. The configuration of the tartrate ion was known to be R, R, and it thus follows that the configuration of irindalone is $1 R, 3 S$. This was not as expected (Bøgesø, 1983), and therefore a series of resolved trans-1-piperazino-3-phenylindan derivatives of biological interest was examined by use of CD spectra (Jensen, H. P., Technical Univ. of Denmark) which showed that the configuration of the more active enantiomer invariably is $1 R, 3 S$ for derivatives with

Fig. 1. Perspective drawing of (a) the tartrate ion and (b) the irindalone ion. Atom numbering is shown. Non-hydrogen atoms are represented by their thermal ellipsoids drawn at the 50% probability level and hydrogen atoms as spheres of an arbitrary radius (Johnson, 1971).

Table 2. Bond lengths (\AA), valency angles $\left({ }^{\circ}\right)$, selected torsion angles $\left(^{\circ}\right.$) and interplanar angles $\left(^{\circ}\right.$)

receptor blocking properties (DA and/or $5 \mathrm{HT}_{2}$ antagonist), while the opposite configuration is found in derivatives with antidepressant activity (DA and NE uptake inhibitors) (Bøgesø, Hyttel, Christensen, Arnt \& Liljefors, 1986).

Bond lengths, valency angles, torsion angles and interplanar angles are given in Table 2. Dimensions of hydrogen bonds are shown in Table 3, and a stereoview of a fragment of the packing is shown in Fig. 2. The tartrate ion adopts the normal conformation with the two hydroxy groups gauche and the carboxylate groups trans to each other. O02 has a distance of only

Table 3. Inter-and intramolecular hydrogen bonds

$X-H \cdots Y$	$X \cdots Y(\AA)$	$X-\mathrm{H} \cdots Y\left({ }^{\circ}\right.$
N11-H11..O011	2.603 (3)	173
N14-H14...0042	2.600 (3)	163
N33-H33..0042ii	3.051 (3)	143
O02-H020 \cdots O042 ${ }^{\text {III }}$	2.939 (3)	130
O02-H020 \cdots O011	$2 \cdot 612$ (3)	126
O03-H030 $\cdots 0041$	$2 \cdot 668$ (4)	118

$$
\text { Symmetry code: (i) } x, y-1, z-1 \text {; (ii) } 1-x, y-\frac{1}{2}, 1-z \text {; (iii) } x, y, z-1 \text {. }
$$

Fig. 2. A fragment of the packing pattern. Hydrogen bonds $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interlink the ions in chains.
0.086 (2) \AA to the best plane through $\mathrm{O} 011, \mathrm{O} 012$, C 01 and C 02 while O 03 has a distance of 0.306 (2) \AA to the best plane through C03, C04, 0041 and 0042. Both of the hydroxy groups seem to be engaged in intramolecular hydrogen bonds, as the hydroxyl H atoms are found very close to the plane of the adjacent carboxylate groups ($c f$. Fig. $1 a$). The $\mathrm{C}-\mathrm{O}$ bond lengths in the carboxylate groups are far from being equal, with variations from 1.228 (3) to $1.290(3) \AA$. This is a result of the strong hydrogen bonds from the piperazine nitrogen atoms N11 and N14 and possibly of the weaker contacts from a hydroxy atom 002 and an amide nitrogen atom N33 (cf. Table 3).

The imidazolidinone ring adopts a twist conformation with C34 and C35 removed 0.22 (1) and $0 \cdot 15$ (1) \AA, respectively, in either direction from the best plane through N31, C32, O32 and N33. The dimensions found for the irindalone ion are very similar to corresponding values found for the related compound tefludazine (Jensen, 1983). The five-membered ring of the indane system is a little flatter in the present structure, a deformation which was predicted by MM2 calculations (Allinger, 1977) to demand very little energy (Jensen, 1983; Liljefors \& Bøgesø, 1988). The relative orientations of the rings in crystals of irindaline tartrate are very similar to that found in crystals of tefludazine. For example, the torsion angles $\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 3-\mathrm{C} 2$ and $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 14-\mathrm{C} 13$ are $62.7(3)$ and $-170.1(2)^{\circ}$, respectively, in the present structure and $57.8(5)$ and $-176.2(5)^{\circ}$ in tefludazine. The values found for the torsion angle $\mathrm{C} 22-\mathrm{C} 21-$ C3-C2 correspond to the conformation for which $M M 2$ calculations find the lowest energy minimum. The same calculations indicate that the values found for the torsion angle $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 14-\mathrm{C} 13$ correspond to an energy minimum $0.5 \mathrm{kcal} \mathrm{mol}^{-1} \quad\left(1 \mathrm{kcal} \mathrm{mol}^{-1} \equiv\right.$
$4.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$) above the global minimum found for a conformer, in which $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 14-\mathrm{C} 13$ is -60°. The energy barriers between the conformers do not exceed $4 \mathrm{kcal} \mathrm{mol}^{-1}$, and both of the conformers - as well as others - will no doubt be accessible in solution (Liljefors \& Bøgesø, 1988).

The author thanks Mr Flemming Hansen for collecting the data for the structure determination. The diffractometer and X-ray generator were acquired by means of Grants 11-1837, 11-2360 and 11-3531 from the Danish Natural Science Research Council.

References

Allinger, N. L. (1977). J. Am. Chem. Soc. 99, 8127-8134.

BøGESø, K. P. (1983). J. Med. Chem. 26, 935-947.
BøGESø, K. P. (1988). Unpublished results.
Bøgesø, K. P., Hyttel, J., Christensen, A. V., Arnt, J. \& Liliefors, T. (1986). Innovative Approaches in Drug Research, edited by A. F. Harms, pp. 371-392. Amsterdam: Elsevier.
Jensen, B. (1983). Acta Cryst. C39, 1055-1057.
Johnson, C. K. (1971). ORTEPII. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Liljefors, T. \& Bøgesø, K. P. (1988). J. Med. Chem. 31, 306-312.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Stewart, J. M., Machin, P. A., Dickinson, C. W., Ammon, H. L., Нeck, H. \& Flack, H. (1976). The XRAY system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.

Redetermination of the Crystal and Molecular Structure of the Antimalarial Chloroquine Bis(dihydrogenphosphate) Dihydrate

By Jean M. Karle*
Department of Pharmacology, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA
and Isabella L. Karle
Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375-5000, USA

(Received 12 December 1987; accepted 18 April 1988)

Abstract. N^{4}-(7-Chloro-4-quinolinyl)- N^{\prime}, N^{\prime}-diethyl-1,4pentanediamine bis(dihydrogenphosphate) dihydrate, $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{ClN}_{3}^{2+} .2 \mathrm{H}_{2} \mathrm{PO}_{4}^{-} .2 \mathrm{H}_{2} \mathrm{O}, M_{r}=551 \cdot 8$, monoclinic, $P 2_{1} / c, a=9.830(2), b=16.879$ (3), $c=15.783$ (4) \AA, $\beta=105.51(2)^{\circ}, \quad V=2523.2 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.452 \mathrm{~g} \mathrm{~cm}^{-3}$, Мо $K \alpha, \lambda=0.71073 \AA, \mu=2.78 \mathrm{~cm}^{-1}$, $F(000)=1168$, room temperature, final $R=5.5 \%$ for 2431 reflections with $\left|F_{o}\right|>3 \sigma$. The chloroquine molecule is a dication with a hydrogen atom from each of the phosphate moieties residing on the quinoline and the terminal chain nitrogen atoms. Neighboring phosphate chains are bridged by chloroquine molecules via hydrogen bonding. Each hydrogen atom on each nitrogen atom, on each phosphate oxygen atom, and in each water molecule participates in hydrogen bonding. The helical manner in which the side chains of the chloroquine molecules wrap around phosphate chains and the stacking interval of the quinoline rings between the phosphate groups may be indicative of the

[^2]interaction of chloroquine molecules with cellular constituents important to antimalarial action.

Introduction. Chloroquine (Fig. 1), first developed for human use during World War II, was the drug of choice for the treatment of Plasmodium falciparum (Webster, 1985). However, in the 1960's resistant strains of P. falciparum appeared in Asia and South America which have now spread across all of the

Fig. 1. Chemical structure of title compound. © 1988 International Union of Crystallography

[^0]: * Lists of anisotropic thermal parameters, torsion angles, and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44990 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Abbreviations used: DA, dopamine; 5- HT_{2}, 5-hydroxotryptophan (serotonine); NE, norepinephrine.
 © 1988 International Union of Crystallography

[^2]: * To whom correspondence should be addressed.

